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Note: this is only a draft of the solutions discussed on Wednesday and might contain some typos or more or
less imprecise statements. If you find some, please let me know.

Ex. 4.9 (Shreve)

For a European call expiring at time T with strike price K, the Black-Scholes-Merton price at time t, if the
time-t stock price is x, is

C(t, SC) =axN (d+(T — t, ;E)) — Kefr(T*t)N (d_ (T o t, .Z‘)) 7
where
1 x 1
trna) = ;= o+ (r+ 57 7]
d—(r,2) = di(1,2) — oV/T,

and N(y) is the cumulative standard normal distribution

1 Yy
N = — 77d = —— 77d .
(y) Vv 271' /—oo ¢ ‘ V 27'[' —y ¢ :

The purpose of this exercise is to show that the function c satisfies the Black-Scholes-Merton partial differential
equation

ce(t,x) + rae,(t, x) + %0’2.2326$I(t,l‘) = rc(t, x), 0<t<T, x>0, (4.10.3)
the terminal condition
ltiTr%Flc(t,x) =(r—-K)*, x>0, 2#K, (4.10.4)
and the boundary conditions
lim c(t, #) = 0, lim [c(t,x) - (z - e*“T*t)K)} —0, 0<t<T. (4.10.5)

Equation (4.10.4) and the first part of (4.10.5) are usually written more simply but less precisely as
e(Tyz)=(z—-K)", >0

and
c(t,0)=0, 0<t<T.

For this exercise, we abbreviate c(t,x) as simply ¢ and d + (T —t,z) as simply di .

(i) Verify first the equation

Ke " T=ON"(d_) = zN'(d,) (4.10.6)



Since N denotes the standard normal cdf, N’ is a pdf of the standard normal distribution, so we have

N'(d_) = \/%exp {_d;-] .

Next, by definition, d_ is equal to
d_(r,x) =dy(1,2) — o/,

where
1 x 1
d = —— |log = —o?
+(7,2) e [ogK + <r+ 57 )T] ,
with the shorthand notation di := dy (T — t,x). Hence,

(dy — amf]

1
/ — —
N'(d-) = mexp - 5
1 [ @ —2d 0T —t+0%(T 1)
= exp |—
V2T p- 2
_ 1 exp [ i exp _ —2d40VT —1t exp (T —1)
V2T 2 2 2
2 T —
= N'(d;)exp [d+0\/T - t} exp {—(7(2”] :

In the middle term we have

dy (T —t,2)oVT —t = Z\/@ [log—i- (7"4-;02) (T—t)}

so that this term becomes

exp [dw\/ﬂ} = exp [1og % + <r + U;) (T — t)]

:%exp KrJrU;) (Tt)}

Ke " T ON'(d_) = K exp [~r(T — )] N'(d) = exp Kr n “;) (T - t)} exp [_"2(7;‘”]

K
oo [(r+ 2) - 0] oo [-2L=0] i

Finally, we arrive at

— wexp 0] N'(d)
= Z‘N/(d_;,_),
which completes the proof

(ii) Show that ¢, = N(dy)- This is the delta of the option. (Be careful! Remember that di is a function of

The Black-Scholes-Merton price at time ¢ is given by

¢:=c(t,x) =N (dyp (T —t,2)) — Ke " TIN (d_(T — t, z)),



SO

o= N (de(T —t,2)) + xa% [N (do (T — t,x))} - xKe_T(T_t)a% [N (d_(T — t,m))]

For the terms a% [N (d+(T — ¢, x))} we have

0] , 0
S [N (@ —t.2) | = N (T = 1,2)) - de (T~ t,2)
= N'(d(T — t,x))agau(T —t,x)
x
1 1 K
=N'{de(T—t,2) ————
( i( x))de T
1 1
=N'(de(T - t,2) ———x=—,
(el =) s
SO we can write
cx = N (dyp(T —t,x)) + N (do (T — t x))#l —zKe "TON(d_(T — t,z)) 1
T + ) + ) o /T —tx — ’ o /7T —tx
(@)
= N (A (T — 1,2)) + aN'(do (T — £, 2))— L — o N (4o (T — £, 2)) — b
B * ’ * T oT —tx * ’ oyT -tz
=N (d(T —t,x)),
which is the desired result.
(iii) Show that
ox
Ct = —TKeir(Tit)N(d_) — mN’(d+>
This is the theta of the option.
The Black-Scholes-Merton price at time ¢ is given by
¢:=c(t,x) = &N (dyp(T —t,2)) — Ke " TIN (d_(T — t, z)),
SO
, 0
¢t =xN' (do (T —t,x)) &dJr(T —t,x)
—rKe "TON (d_(T —t,2)) — Ke " T=ON' (d_(T — t, x)) 94 (T —t, ).

ot

For the term %d_ (T —t,x) we have

0 0
ad,(T — t,.’E) = adJ’»(T — t,.’E) + m,

SO we can write
, 0
Ct =xN (d_;,_(T — t, .’IJ)) &d.}r (T — t, .1?)

—rKe " TN (d_(T —t,x)) — Ke "IN (d_(T — t,z)) %d_(T —t,2)
@)

N (dy (T t,2)) S (T~ 1,2)
o0
KT TN (4 (T~ )~ aN' () [ 2y (T~ )+
=—rKe " TN (d_(T — t,2)) — xN'(d+)#_t,

which is the required formula.



(iv) Use the formulas above to show that ¢ satisfies (4.10.3).
We had that
e =N (d+<T - t’x)) )
so

Cox = N'(do(T —t,z)) %d+(T —t, 7).

Plugging of all the above results in (4.10.3) gives

¢t + rae, + %025020,” =—rKe "TUN (d_(T — t,x)) —xN'(d (T — t, x))72\/;’7—t +reN (d (T —t,x))
0
2 nr/ _ -~ _
+20 2*N' (d (T —t,x)) axd+(T t,x).

Now consider the underlined terms. We have

1 0 o
—_aN'(d a -2 2N/ d d. =
T (+)2m+20—x (+)8.’L‘+

od4 1
— / —_—
2xN (dy) (am . t)

o 1 1
=_—zN'(d —

2" (d+) (Gxa\/T—tx T—t)
=0.

Therefore,

¢t +rreg + %0’21‘QCEZ = &N (dp (T —t,2)) —rKe " T YN (d_(T — t, z))
= [;;;N (dy(T —t,2)) — Ke " T=DN (d_(T — t, :c))}
= re(t, x),
which completes the proof.

(v) Show that for x > K, limyr dy = oo, but for 0 < z < K, limyp dy = —o0. Use these equalities to derive
the terminal condition (4.10.4).

We need to arrive at

lime(t,z) = (v — K)T, z>0,z#K.

T
Recall,
1 [z 1 |
di(T —t,2) = ——— |log — o | (T —t
+( ,T) Jm_ogK+(r+20)( )_,
d_(T—-t,x)=d (T —t,x) —oVT —t
1 [z 1 i
- log — — o) (T -t
= e+ (r- 30 o).
1 [z 1 |
dio(T —t,2) = ———— |log — + =62 ) (T -t
AT —br) = il e+ (7250 (70

Notice that if # > K, then = > 1, so log & > 0 and dy > 0; if # < K, then log %= < 0. When ¢ 1 T" then

VI —1t]0,so we have

. . 1 x 1 5

1 1
=lim —— 10 —l—limi r+ =02 ) (T -t
tTTU\/T g tTTO'\/T—t( 2 >( )
. 1 T VT —t 9
%#%mbgzﬁ%la(riz“)

oo, if x > K,
-, ifz<K.



Next,

1, ifz>K,

lim N (d+ (T —t, =
tlTI% (d( %) {O, ifxr < K.

Finally,
lim e () = lim (:vN (do(T —t,2)) — Ke " T=YN (d_(T —t, x)))

INEE 1—-Ke"T-T) .1, ifz>K,
Sz 0-Ke"T-T .0, ifz<K,

B —-K, ifxz>K,
B if r < K,
= (x —_

which establishes the terminal condition (4.10.4).

(vi) Show that for 0 <t < T, lim,gdy = —oo. Use this fact to verify the first part of boundary condition
(4.10.5) as x ] 0.

Let 0 <t <T. When z | 0 then log % — —oo and
limdy (T — t,x) = li S S | PO (A (T —t)
a0 0 T T eyt [ PR T\ 27

so that

Thus,

hmc(t x) = lim (q:N (d (T —t,z)) — Ke " T"YN (d_(T — t,x)))

zl0 z]0
establishing the first part of the boundary condition (4.10.5).

(vii) Show that for 0 <t < T, lim,_, o, de = co. Use this fact to verify the second part of boundary condition
(4.10.5) as x — oo. In this verification, you will need to show that

lim 7N(d+) -1

T—00 x‘J

=0.

This is an indeterminate form , and L’Hopital’s rule implies that this limit is

d
. 3o [N(dy) —1)]
Jm L1

Work out this expression and use the fact that

T = Kexp{m/ﬁcu — (T 1) <7"+ 202>}

to write this expression solely in terms of dy (i.e., without the appearance of any x except the x in the
argument of dy (T —t,x)). Then argue that the limit is zero as dy — oo.

Let 0 <t < T. We need to show that

lim [c(t, x) — (m - 6_7'(T_t)K)} =0

T—00

When x — oo then log = — oo and

. . 1 x 1 5



so that
lim N (de(T —t,z)) = 1.

Tr—r00

Next,

Tr—r00

= lim [oN (d4(T —t,2)) — 2]
= lim @ [N (dy(T —t,2)) — 1]

Tr—r0o0

b N (T —tw) —1

x—00 x—1

If the above limit exists, it is equal to

_ _ LN (dy (T —t -1
oy NV (e (T _lt,x)) Uy e Y (de - ,x)) —1]
T—r00 x T—00 —x
N (dy (T = t,2)) edy (T — t,x)
= lim £

T—00 —x—2

N' (A (T — t,2)) —4—

= lim
T—00 —r—2

N (dy (T —t, 7)) —A—
= lim — g

T—00 x—1

1

i { di(T —t,7) }
= im x expg ————~
O’\/T tx—=oo /27 P 2

1 ) [ di(T—t,x)}
——————— lim zexp | ——————=
o/ 2m(T —t) z—oe 2

() 1 di
= ————— lim Kexp|loVT —tdy — (r + —0o ) } ex [ ]
o /2T — 1) deroo 0 [ ! 2 e

= —Wexp {— <7" + ;a2> (T — t)} Pinoo exp [a\/Tiau - ]

i

where in (*) we used the hint and expressed x using the formula for d; as follows
1 T 1
dy = ————|log =+ (7 + =02 | (T - 1),
=g [l (v 50?) - )
1
= Kexp [0\/T —tdy — <r + 202) (T - t)}

as well as took the limit w.r.t. d;, since when  — oo also di — co. So the limit in (1) exists and is
equal to 0, which finally establishes the second boundary condition in (4.10.5).

lim [c(t, x) — (:E - e_T'(T_t)K)} = Ell,ngo [xN (d (T —t,2)) — Ke "T=ON (d_(T — t,z)) — (m - e_"(T_t)K)}



Ex. 4.14 (Shreve)

In the derivation of the Ité-Doeblin formula, Theorem 4.4.1, we considered only the case of the function f(x) =
%w2, for which f”(x) = 1. This made it easy to determine the limit of the last term,

N =

S 7 ) W (1) - W)

appearing in (4.4.5). Indeed,

n—1 n—1

im 2 W () W (tj1) — W) = o 2 (W (tj+1) — W(t;)]
=W W[(T)=T

T
- / OV ()t

If we had been working with an arbitrary function f(x), we could not replace f”?(W(t;)) by 1 in the argument
above. It is tempting in this case to just argue that [W(tj11) — W (¢;)]? is approzimately equal to tji1 —t;j, so
that

S £ () W (t512) — W)

18 approrimately equal to
n—1

S W) (t1 — t5)

Jj=0

and this has limit fOT (W (t)dt as ||| — 0. However, as discussed in Remark 3.4.4, it does not make
sense to say that (W (tj+1) — W(t;))? is approzimately equal to tji1 —t;. In this exercise, we develop a correct
explanation for the equation

n—1 T
. 17 ) ) . 12 _ "
iy 2 7OV ) 07 50) = W) | v (4.10.22)
Define
Zy = [ (W) [(W(t0) = W) = (b1 = 15)]
so that
z_: P W (5)) [W(tj41) = W (1)) = Z_: Zj+ z_: F'W ()t — 7). (4.10.23)
=0 j=0 =0

For completeness, recall the mentioned remark.

Rem. 3.4.4. In the proof above, we derived the equations (3.4.6) and (3.4.7):

E[(W (L = W) =ty — 1y

and
Var [(W (i = W(E))] =2 (1 — 1,)%.

It is tempting to argue that when tj1 —t; is small, (tj+1—t;)? is very small, and therefore (W (tj11)— W (t;))?,
although random, is with high probability near its mean tj411 —t;. We could therefore claim that

(W(tj1) = W(t;)* ~ tj —t, (3.4.8)

This approximation is trivially true because, when tj1q1 — t; is small, both sides are near zero. It would also
be true if we squared the right-hand side, multiplied the right-hand side by 2, or made any of several other



significant changes to the right-hand side. In other words, (38.4.8) really has no content. A better way to try to
capture what we think is going on is to write

(W (tj41) = W () ~ ty —t; (3.4.9)

instead of (3.4.8). However,
(W (tj41) — W(t))))
tit1 =t

is in fact not near 1, regardless of how small we make tj 41 —t;. ti. It is the square of the standard normal

random variable
W(tj1) — W(ty)

Yit1 =

Vi1 — 1
and its distribution is the same, no matter how small we make t; 11 —t;.
We write informally
AW (£)dW (t) = dt (3.4.10)

but this should not be interpreted to mean either (3.4.8) or (8.4.9).

we conclude that

Brownian motion accumulates quadratic variation at rate one per unit time.

(i) Show that Z; is F(tj+1)-measurable and

E[Z;|F(t;)] =0, E[Z3F(t;)] = 2[f" (W) (ta — 1)

First, notice that Z; € F(t;41) and that the Brownian motion increment W (t;11) — W (t;) L F(t;), with
the vaiance t;41 — t;. Then, we have

E(Z)1F ()] = £ (WENE [(W(t1) = W) = (G — 1) F(t,)]

f
IOV () [(tj01 — t5) = (tj41 — t5)]
0

Next, recall that for X ~ N(0,s) we have EX* = 3E[X?]? = 3s2. Then.

Var [Z;|F(t;)] = [f" (W (t)))

9 2
B | [0V - W) - (e - 0] | 70)
=W E[(W(tis1) = W) = 2(W (k1) = W) (1 — 1) + (b — )7 | F (1)
LW [E[(W (1) = W) | F(t)] = 2B [ (W(tia) = W) (i — 1) Ft)]
+E [(tj+1 - tj)Q‘ f(tj)H
=" (W ()] [3(tj41 — t1)® = 2(tj41 — o) + (tj41 — t1)?]
=2[f"(W ()] (b1 — )7,

which completes the proof.

It remains to show that

n—1
lim 3" Z; =0 4.10.24
[I11=0]] ; ! ( )

This will cause us to obtain (4.10.22) when we take the limit in (4.10.23). Prove (4.10.24) in the following
steps.



(iii) Show that EY ") Z; = 0.

Using interated conditioning and linearity of conditional expectation we can write

EZZ =E ZE (Z;|F(t;

O

=

&=
3 b
A

e}

I
o
<.
I
o

which is the required result.

(iv) Under the assumption that EfOT [F" (W () dt is finite, show that

n—1
li Vi Zil =0
e Z !
(Warning: The random variables Z1, Za, . .., Zn—1 opare not independent.)
r 2
n—1 n—1
Var |Y Z;| =E || )7
j=0 §=0

=E ZZQ+2 > 2z
_— 0<i<j<n

e

e S ER[Z|F6)]) +2 Y ElZE (2] 70)

=0 0<i<j<n
S ERIVE)N (t1 —)]
=0

zz tror - 6P [V )P

n—1

<2 max |t =t DB [V )] (e - 1)
7=0

—0

(+x)
— 0,

where in (**) we use the assumption that E fOT [f7(W (t))]? dt < oo as then

1 E [[/"( |t -t) = lim E (tjg1 —t;
unlﬁgoz D] e Z (fia1 = 15)

- / W (@)t
< OQ.

This completes the proof.

From (%ii), we conclude that E Z = 0 converges to its mean, which by (%) is zero. This establishes (4.10.24).



